
A Scoring Map Algorithm for Automatically Detecting Structural
Similarity of DOM Elements

 Julián Grigera1,2,3, Juan Cruz Gardey1,2, Alejandra Garrido1,2 and Gustavo Rossi1,2
1LIFIA, Facultad de Informática, Universidad Nacional de La Plata, La Plata (CP 1900), Argentina

 2CONICET, Argentina 3CICPBA, Argentina
{juliang, jcgardey, garrido, gustavo}@lifia.info.unlp.edu.ar

Keywords: Information Extraction, Web Adaptation, Refactoring for Usability

Abstract: Most documents in the WWW are generated from templates that represent user interface (UI) elements, and
later filled with contents. In the field of information extraction, many approaches emerged to analyze the
documents’ structure, obtain similar features amongst them, and generate wrappers that are used to extract
the raw contents from such documents. Therefore, most techniques documented in the literature are optimized
to compare full documents, but there are other fields of applicability that require analyzing structural similarity
on smaller UI components, like web augmentation or transcoding. In this paper we present two flexible
algorithms to measure similarity between DOM Elements by using a mixed approach that considers both
elements’ location and inner structure. The proposed algorithms were used in the context of two projects: an
approach for automatic usability refactoring, and a web accessibility helper. We also present a wrapper
induction technique based on such algorithms. Additionally, we present a precision & recall evaluation of our
algorithms as compared with other known approaches, applied to DOM elements of different sizes, but
smaller than full scaled documents. The proposed algorithms run in linear time, so they are faster than most
approaches that analyze structural similarity.

1 INTRODUCTION

The world changed profoundly when 25 years ago,
Tim Berners-Lee publicized the World Wide Web
project and invited wide collaboration (W3C, 2016).
Thanks to that turning point in our history, today we
possess the largest data repository for all people and
all fields of science. However, being able to profit
from this huge amount of data requires building
increasingly complex automation techniques in two
main areas of research that are of our interest:
information extraction, and human-computer
interaction (HCI) aspects like adaptability and
usability.

In the area of information extraction, it is essential
to recognize document structure and identify
structural similarity, since this allows clustering
functionally equivalent components and design
cluster-specific mining algorithms for each cluster
(Omer, Ruth, & Shahar, 2012; Joshi et al, 2003). For
example, in a news portal that shows all articles in
structurally similar components (in terms of inner
elements and look-and-feel), this similarity could be
identified by news extraction applications to separate

presentation from content (Reis et al, 2004). Other
approaches in the Area of Web Engineering even use
variants of Web Scraping to make the application
development process easier (Norrie et al, 2014).
Meanwhile, in the field of HCI, there is an increasing
demand to automatically improve the user experience
in the web, including techniques for adaptability,
personalization, accessibility, and usability. Among
the research works in this area we may find
techniques like adaptation mechanisms for touch-
operated mobile devices (Nebeling, Speicher &
Norrie, 2013), transcoding to improve accessibility
(Asakawa & Takagi, 2008), augmentation to create
personalized applications versions (Diaz, 2012) and
our own work on refactoring to improve usability
(Grigera et al 2016; Grigera, Garrido & Rivero, 2014)
and accessibility (Garrido et al, 2013). For the sake of
conciseness, in this article we will call all these
techniques web adaptations. We claim that for these
techniques to work correctly and fully unattended at
a large scale, the ability to detect structural similarity
in pages or smaller UI elements is essential. For
example, if an e-commerce website has an
accessibility problem in the UI element that displays

a product, it will inevitably have the same problem in
all products, and it will be important to apply a
solution to all instances, no matter the product.
Therefore, in our research objective to automatically
improve usability in web pages, we found that we
could benefit from the work on data extraction, as we
have a challenge in common: automatically and
precisely discover the structure and similarity of web
content to be able to cluster it before further
processing.

It is interesting to note that web adaptations, even
if they can be compared to “code adaptations” (i.e.,
refactorings and program transformations), have a
fundamental difference from the approach used in
code refactoring tools, in which code smells are
detected and solved on a per-instance basis. Since UI
elements from web documents are automatically
generated from templates, as opposed to manually
crafted code snippets, web adaptations at large should
generally work like program restructuring
transformations (Akers et al, 2005): all instances of a
problem should be matched and fixed at once.

The challenge of detecting structural similarity is
generally addressed by the fact that most data
intensive websites generate their content
dynamically, by retrieving it from a database and
displaying it using template-generated pages. Thus, in
the field of information extraction, several
approaches were devised to discover the structure in
the underlying templates. These approaches typically
produce a wrapper, which is then used to match all
structurally similar pages and extract their raw
contents. Once the similar pages are grouped in
clusters, the wrapper is generated by identifying the
common structure within each cluster (Joshi et al,
2003). Several algorithms used to cluster similar
pages compute tree edit distance between the DOM
structure of entire pages (Omer, Ruth, & Shahar,
2012; Reis et al, 2004). Since these algorithms are
computationally expensive, other approaches have
been proposed to measure structural similarity with
improved execution time, but mostly at the expense
of accuracy (Joshi et al, 2003; Buttler, 2004).

Besides the problems with execution time,
complexity of data structure and accuracy, most
techniques for data extraction using structural
clustering are effective when applied to full
documents. Since the algorithms generally consider
the inner structure of deep trees, they usually get
poorer results in the comparison of smaller DOM
elements that consist of only few nodes. However,

1 XML Path Language http://www.w3.org/TR/xpath-31/

(accessed Aug 25, 2016)

web adaptation techniques like transcoding or
refactoring are generally applied on such DOM
elements. For example, the adaptations for mobile
interfaces allowed by the tool W3Touch, may be used
to resize all menu items with touch-related problems
inside a page (Nebeling, Speicher & Norrie, 2013).
Another example is the usability refactoring “Turn
Attribute into Link” (Garrido, Rossi & Distante,
2011), which may be used to insert a link in all similar
elements of a list.

The problem of comparing similarity between
DOM elements has been addressed before, usually by
comparing the elements’ relative position in a
document using XPath locators1 (Grigalis & Čenys,
2014; Amagasa, Wen & Kitagawa, 2007; Zheng et al,
2009). However, while they may successfully detect
similar elements arranged in iterative structures (like
lists or menus), they are weaker in the cases where
similar elements are placed in different locations.
When this happens, the elements’ inner structure can
help to determine similarity where the location failed
to do so, if the structure is complex enough.

In this paper we present an algorithm designed to
detect similarity in DOM elements of different sizes.
This algorithm is based on the comparison of both
XPath locators and inner structure, including relevant
tag attributes. Additionally, a variant of this algorithm
is presented, which considers also on-screen
dimensions and position of the elements. In order to
show their applicability, we describe how we apply
these algorithms in two approaches for web
adaptation in usability and accessibility.

Our algorithms can successfully compare and
cluster elements as small as single nodes but has also
the flexibility to compare larger elements with the
same accuracy, or even better than state-of-the-art
methods. We support this claim with an evaluation
and explain the results and performance differences
with respect to other algorithms. Additionally, a
wrapper induction technique is presented, that is
based on the Scoring Map algorithm.

In summary, this paper we make the following
contributions:
• We present two algorithms that compute a

similarity measure between DOM elements
and perform well with different element sizes.

• We show the applicability of the algorithms in
two different projects for web usability and
accessibility. The DOM element comparison is
used for clustering elements with the same
usability smell in one case, and accessibility

smell in the other; the inducted wrapper is then
used to fix the bad smells by refactoring or
transcoding.

• We assess the performance of the algorithms in
comparison to others found in the literature
through an empirical evaluation, with a set of
more than 800 DOM elements of different sizes
from well-known sites.

2 RELATED WORK

Existing literature in the area shows several different
ways of detecting similarity between DOM elements.
Some of these techniques are applicable to any tree
structure, and some are specific to XML or HTML
structures. Many of these methods can be found in an
early review by Buttler (2004). We present the related
work in three groups: tree edit distance algorithms,
bag of paths methods, and other approaches.

2.1 Tree Edit Distance Algorithms

Since DOM elements can be represented as tree
structures, they can be compared with some similarity
measure between trees, such as edit distance. This
technique is a generalization of string edit distance
algorithms like Levenshtein’s (1966), in which two
strings are similar depending on the amount of edit
operations required to go from one to the other.
Operations typically consist in adding or removing a
character and replacing one character for another.

Since the Tree Edit Distance algorithms are
generally very time-consuming (up to quadratic time
complexity), different approaches emerged to
improve their performance. One of the first or such
algorithms proposed by Tai (1979) uses mappings,
i.e. sets of edit operations without a specific order, to
calculate tree-to-tree edition cost. Following Tai’s,
other algorithms based on mappings were proposed,
mainly focused on improving the running times. A
popular one is RTDM (Restricted Top-Down
Distance Metric) (Reis, 2004), which uses mappings
such as Tai’s but with restrictions on the mappings
that make it faster. Building on RTDM, Barkol,
Bergman & Shahar (2012) developed SiSTeR, which
is an adaptation that weights the repetition of
elements in a special manner, in order to consider as
similar two HTML structures that differ only in the
amount of similar children at any given level (e.g. two
blog posts with different amounts of comments).

Other restricted mapping methods were
developed, like the bottom-up distance (Valiente,
2001), but RTDM and its variants are more suited for

DOM elements where nodes closer to the root are
generally more relevant than the leaves.

Griasev and Ramanauskaite modified the TED
algorithm to compare HTML blocks [Griasev18].
They weight the cost of the edit operations depending
on the tree level in which they are performed, giving
a greater cost to those that occur at a higher level.
Moreover, since different HTML tags can be used to
achieve the same result, their version of the algorithm
also accounts for tag interchangeability.

TED algorithms have also been proposed to
compare entire web pages [Xu17]. This work defines
the similarity of two web pages as the edit distance
between their block trees; structures that contain both
structural and visual information.

2.2 Bag of Paths

Another approach to calculate similarity between
trees is by gathering all paths / sequences of nodes
that result from traversing the tree from the root to
each leaf node, and then comparing similarity
between the bags of paths of different trees. An
implementation of this algorithm for general trees
was published by Joshi et al (2003), with a variant for
the specific case of XPaths in HTML documents. The
latter was used in different approaches for documents
clustering (Grigalis & Čenys, 2014).

The bag of paths method has one peculiarity: the
paths of nodes for a given tree ignore the siblings’
relationships, and only preserve the parent-child
links. This results in a simpler algorithm that can still
get very good results in the comparisons. We have
similar structural restrictions in our algorithms, as we
explain later on in Section 3. The time complexity of
this method is O(n2N), where n denotes the number of
documents and N the number of paths.

Another proposal similar to the Bag of Paths
approach in the broader context of hierarchical data
structures, is by using pq-grams (Augsten, Böhlen &
Gamper, 2005). Pq-grams are structurally rich
subtrees that can be represented as sequences. Each
tree to be compared is represented as a set of pq-
grams, then used in the comparison. This performs in
O(n log n), where n is the number of tree nodes.

Our approach is similar to the aforementioned in
how it generates linear sequences to represent and
eventually compare tree structures, although relying
less on topological information and more on nodes’
specific information (such as HTML attributes).

2.3 Other Approaches

Different approaches have been developed that have
little or nothing to do with tree edition distance or
paths comparison. Many approaches like the one

proposed by Zen et. al [Zen2013], rely on visual cues
from browser renderings to identify similar visual
patterns on webpages without depending on the DOM
structure. Another interesting work is that of using
fingerprinting to represent documents (Hachenberg &
Gottron, 2013), enabling a fast way of comparing
documents without the need of going through them
completely, but by comparing their hashes instead.
Locality preserving hashes are particularly appealing
in this context, since the hash codes change according
to their contents, instead of avoiding collisions like
regular hash functions do.

Most of the previous methods focus on the inner
structure of documents, but few consider external
factors (amongst the ones commented here, only the
work of Grigalis and Çenys (2014) use inbound links
to determine similarity). This is due to the fact that
these approaches are generally designed to compare
full documents. There are however some works
focused on comparing smaller elements where
external factors like location play a more important
role. Amagasa, Wen and Kitagawa (2007) use XPath
expressions to identify elements in XML documents,
which is an effective approach given that XML
definitions usually have more diverse and meaningful
labels than, for instance, HTML. Other works focused
on HTML elements also use tag paths: Zheng, Song,
Wen, and Giles generate wrappers for small elements,
to extract information from single entities (Zheng et
al, 2009). In this work the authors propose a mixed
approach based on a “broom” structure, where tag
paths are used identify potentially similar elements,
and then inner structure analysis is performed to
generate wrappers.

Our approach is also a combined method that
considers some of the inner structure of the elements,
but also their location inside the document where they
are contained.

3 A SCORING MAP ALGRITHM
TO DETECT DOM ELEMENTS

The proposed algorithm for detecting similarity
between DOM elements is a weighted comparison of
two aspects: location inside the DOM tree, and inner
structure. As the inner structure grows larger, the
more relevant it becomes in the final score.
Conversely, when the structure is smaller, the
location path that gains more relevance. This
adjustable scoring method makes the algorithm
flexible, enabling it to detect both small and large
DOM elements in terms of tree structure. In this
section we also introduce a variant that considers also
the elements’ dimensions and position as rendered in
the screen. Finally, we show a wrapper induction

technique based on the proposed algorithm and
analyze the time complexity.

3.1 Scoring Map Algorithm

The proposed algorithm processes the comparison in
two steps: first, it generates a map of the DOM
elements to be compared, where some fundamental
aspects are captured, such as tag names organized by
level (i.e., depth within the tree), along with relevant
attributes (e.g. class), but ignoring text nodes. Then,
these maps are compared to each other, generating a
similarity score, which is a number between 0 and 1.
The main benefit of constructing such map structure,
which is created in linear time, is that it enables
computing the similarity measure also in linear time
(with respect to the number of nodes).

The map summarizes key aspects of the elements’
structure and location. Considering a single DOM
element’s tree structure, the map captures the
following information for each node:
• Level number, which indicates depth in the

DOM tree, where the target node’s level is 0,
its children 1, and so on. Parent nodes are also
included using negative levels, i.e. the closest
ancestor has level -1.

• Tag name, often used as label in general tree
algorithms.

• Relevant attributes, in particular CSS class.
• Score, which is a number assigned by the

algorithm representing the relevance of the
previous attributes when comparison is made.

In the map, the level number, tag name and
attributes together compose the key, and the score is
the value, but since HTML nodes can contain many
attributes, there will be one key for each, with the
same level number and tag name. This way. a node
will in fact generate many entries in the map, one for
each attribute. For example, if a DOM element
contains the following node:

<div id=”container” class=”main zen”>

the map is populated with 3 entries: one for the div
label alone, one for the div label with the id
attribute, and 2 more for the class attribute, one for
each value: main and zen. Only values of the class
attribute are considered, other attributes are kept
without their values. In this case, all three entries
would get a same score (later in this section we
explain how this is determined). Also, if this element
were repeated, only one set of entries would be
entered since a map cannot have repeated keys, which
is actually a desirable property for an algorithm that
applies to HTML elements. Documents generated by
HTML templates typically contain iteratively
generated data, e.g., comments in a post. In this case,

two posts from a same template should always be
considered similar, no matter the different amounts of
comments on each one. Therefore, comparing only
one entry for a set of equivalent DOM elements is
likely to obtain better results than considering them
as distinct (Omer, Ruth & Shahar, 2012).

This map organization is important in the second
step of the algorithm, where the actual comparison is
made based on these scores. A full example of a DOM
element and its scoring map is depicted in Fig. 1.

Two initial score values are set in the map: one at
the root, and one at the first parent node (levels 0 and
-1, respectively). These scores decrease sideways, i.e.
from the root down to the leaves, and from the first
parent node up to the higher ancestors. An important
aspect at this stage is how the initial score for the
parent node is generated, which is inversely
proportional to the height of the tree. This is key to
give our algorithm the flexibility to detect similar
elements relying less on their location when the trees
are large enough. In these cases, the inner structure
scores get more weight on the overall comparison.

Another aspect worth mentioning of the map
structure for the elements is how the tree structure is
captured. Notice that the only information for each
node regarding this structure is the level number (or
depth), which ignores the parent-child relationships
and also the order. The preliminary tests we ran, and
finally the experiment described in the following
section, showed that this makes the algorithm simpler
and faster, and does not implicate a significant
decrease in the obtained scores.

The final similarity score between the two
elements is made by comparing the values of their
maps. The following formula describes how we
obtain the similarity S between two elements once
their maps m and n are generated:

𝑆(𝑚, 𝑛) = 	
∑ max(𝑚[𝑘], 𝑛[𝑘]) ∗ 2!	∈	(%(&)∩%()))

∑ 𝑚[𝑘]!	∈	%(&)	 + ∑ 𝑛[𝑘]!	∈	%())	

The function K(m) answers the set of keys of map
m, and m[k] returns the score for the key k in the map
m. In the dividend summation, we obtain the
intersection of the keys for both maps. For each of
these keys, we obtain the scores in both maps and get
the highest value (with max(m[k],n[k])) times 2. The
divisor term adds the total scores of both maps. This
function intends to compare similitude in maps using
their common keys over the number of combined
keys, much like the Jaccard index calculates the ratio
between intersection and union in sample sets. It is
also to the way the Bag of Paths algorithm calculates
similarity (Joshi et al, 2003).

3.2 Dimensional Variant

We devised an alternative algorithm that also
considers size and position of the elements to improve
the detection of similar elements when their inner
structure is scarce. This criterion considers on-screen
position and dimension to determine if two elements
are part of a series of repetitive, similar widgets.

It is usual for repeating DOM elements to be
aligned, either vertically or horizontally. In such
cases, it is also usual for one of their dimensions to be
also equal; in the case of horizontal alignment, the
height (e.g. a top navigation menu), and in the case of
vertical alignment, the width (e.g. products listing).

By using these properties in repetitive elements,
we obtain a dimensional similarity measure between
0 and 1 for either of the two cases (i.e. vertical or
horizontal alignment), in the compared elements.

Figure 1. Sample DOM Element and its corresponding comparison map.

For each of the two potential alignments, this measure
is calculated by obtaining the absolute values of the
proportional differences in position and dimension.
The higher of both alignment measures is then
considered as an extra weighted term to the similarity
formula. A visual example is shown in Fig. 2.

Figure 2. Dimensional alignment example in DOM
Elements.

In current web applications, it is usual to find
responsive layouts that adapt their contents to
different devices. This could harm the dimensional
scores when different sized elements are the same but
rendered in different devices. Depending on the case,
this may lead to wrong results, but also can be
beneficial to detect them as different elements, e.g. in
the field of applicability of web adaptation where
different adaptations can be applied to the UI
depending on the device.

This variant has shown improvements over the
base algorithm in elements with little structure, but
imposes an extra step in the capture to gather the
elements’ bound boxes. The base algorithm, on the
other hand, can be applied to any DOM element
represented with the HTML code only.

3.3 Time Complexity

The algorithm runs in O(n), i.e. linear time, with
respect to the size of the compared trees (being n the
total number of nodes). Even if there are two steps
involved, one for building the maps and a second to
perform the comparison, both are linear. It should be
noticed that calculating the intersection of keys for
the second step (function K(m) in the formula) is

linear given that only one of the structures is
traversed, while the other is accessed by key, which
is generally considered constant (O(1)) for maps or
dictionaries (although it can be, depending on the
language, linear with respect to the size of the key).

When applying the algorithm to larger DOM
structures, e.g. full documents, some improvements
could be made to make this time worst case O(n) in
practice, by applying a cutoff value when the
relevance score drops below a certain level. This
could reduce the trees traversing significantly, and
consequently decrease the size of the maps, while
keeping the most relevant score components.

3.4 Wrapper Induction

Using the algorithms described in this section, we
developed a way of generating wrappers that may be
later used to match new elements or retrieve raw
information from them.

Initially, a first element is taken as reference to
generate an initial map (the same way we explain in
section 3.1) that will be used as base map. Then, as
new elements are taken into consideration, we refine
the base map to iteratively generate the wrapper. The
way to achieve this is by generating a new map for
each new element (we will refer to as candidate map)
and apply the comparison algorithm, also described
in section 3.1. Depending on the result of this
comparison, we apply either positive or negative
reinforcements over the base map.

When comparing a candidate map with the base
map, if the result of the comparison is over a given
similarity threshold, we will first find all the
intersecting keys of both maps. The scores for these
keys on the base maps are positively reinforced, by
adding a reinforcement value. This value is calculated
as a proportion of the score for the same key in the
candidate map. During our experiments, we have
obtained best results with a proportion of 0.35, but
further analysis should be made to assess and
optimize this value. When the result of the
comparison between candidate and base maps do not
reach the similarity threshold, a negative
reinforcement is applied in a similar way, also to the
intersecting keys, by subtracting the same
reinforcement value. It is important that, no matter
how much negative reinforcement a score gets, it
never reaches a value below zero.

Intuitively, those keys that are shared among
similar elements, will get a higher score once the
wrapper induction is done. Conversely, those keys
that are too common, i.e. present in many different
elements in the document, will get a lower score, until
eventually reaching zero. This way, only the
distinctive keys (which represent tags and attributes)
end up being the most relevant in the wrapper.

4 APPLICABILITY

We developed and refined our algorithms to measure
structural similarity in the context of two different
Web Engineering approaches that make use of web
adaptation in the specific areas of usability and
accessibility. These approaches are described in the
next subsections.

4.1 Automatic Detection and
Correction of Usability Smells

The first use case for the Scoring Map algorithm is
automatic detection of usability problems on web
applications. This was developed to ease usability
assessment of web applications, since it is usually
expensive and tedious (Fernandez, Insfran &
Abrahão, 2011). Even when there are tools that
analyze user interaction (UI) events and provide
sophisticated visualizations, the repair process mostly
requires a usability expert to interpret testing data,
discover the underlying problems behind the
visualizations, and manually craft the solutions.

The approach is based on refactoring and its
capacity to incrementally improve not only internal
quality factors of a deployed application, but also
external ones, like usability (Distante et al, 2014) or
accessibility (Garrido et al, 2013). We build on the
concept of “bad smell” from the refactoring jargon
and characterize usability problems as “usability
smells”, i.e., signs of poor design in usability with
known solutions in terms of usability refactorings
(Garrido, Rossi & Distante, 2011).

The scoring map algorithm is then used in the tool
that supports this approach, the Usability Smell
Finder (USF). This tool analyses interaction events
from real users on-the-fly, discovers usability smells
and reports them together with a concrete solution in
terms of a usability refactoring (Grigera, Garrido &
Rivero, 2014). For example, USF reports the smell
"Unresponsive Element" when an interface element is
usually clicked by many users but does not trigger any
actions. This happens when such elements give a hint
because of their appearance. Typical elements where
we have found this smell include products list photos,
website headings, and checkbox/radio button labels.

Each time USF finds an instance of this smell in a
DOM element, it calculates the similarity of this
element with clusters of elements previously found
with the same smell. When the number of users that
run into this smell reaches certain threshold, USF
reports it suggesting the refactoring "Turn Attribute
into Link".

The wrapper induction technique presented in this
paper becomes useful at a later stage. The toolkit is
able in some cases to automatically correct a reported

usability smell by means of a client-side web
refactoring (CSWR) (Garrido et al, 2013), i.e.,
generic scripts that are parameterized to be applied on
DOM elements in the client-side. Our proposal
includes applying CSWR automatically by
parameterizing them with the specific details of a
detected usability smell and making use of the
wrapper to find all matching elements that suffer from
a same specific smell.

We obtained better results with the Scoring Map
algorithm than simple XPath comparison, given that
it works better on large elements, resisting HTML
changes (small elements get similar results, since
Scoring Map works in a similar way in these cases).

4.2 Use of Semantic Tags to Improve
Web Application Accessibility

According to W3C accessibility standards, most Web
applications are neither accessible nor usable for
people with disabilities. One of the problems is that
the content of a web page is usually fragmented and
organized in visually recognizable groups, which
added to our previous knowledge, allows sighted
users to identify their role: a menu, an advertisement,
a shopping cart, etc. On the contrary, unsighted users
don't have access to this visual information. We
developed a toolkit that includes a crowdsourcing
platform for volunteer users to add extra semantic
information to the DOM elements (Zanotti, 2016)
using predefined tags, in order to transcode the visual
information into a more accessible data presentation
(plain text). This extra information is then
automatically added on the client-side on demand,
which is aimed to improve some accessibility aspects
such as screen-reader functionalities.

By using an editor tool, when a user recognizes a
DOM element, the tool applies the structural
similarity algorithm to find similar elements that
should be identically tagged within the page. For
example, as soon as the user tags a Facebook post, all
other posts are recognized as such and highlighted
with the same color. At this stage we applied our
wrapper induction method on the selected element to
automatically tag the similar ones. Small structural
differences are ignored, like the number comments.
By adjusting the threshold, users can cluster elements
with higher precision, e.g., successfully filtering out
ads disguised as content. The Scoring Map algorithm
was actually first developed during this work, since
other comparison methods didn’t have an adjustable
similarity threshold, or the required speed.

A screenshot of the tool capturing YouTube
videos thumbnails can be seen in Fig. 3, where the
threshold is adapted to include or exclude video lists
in the clustering.

Figure 3. Web Accessibility Transcoder capturing similar DOM elements, using two different threshold values.

This way, we can easily reduce the entire web page
into a limited set of semantically identifiable UI
elements that can be used to create accessible and
personalized views of the same web application, by
applying on-the-fly transformations to each semantic
element of the requested page. This happens in real
time, as soon as the page loads, even on DOM
changes, such as continuous content loading
applications like Facebook or Twitter. On each
refresh, the application applies different strategies to
look for DOM elements that match the previously
defined semantic elements, by applying the induction
wrapper, the application is able to recognize those
similar DOM elements where the new semantic
information has to be injected. This process must be
fast enough to avoid interfering on the user
experience, which is achieved with our method.

5 EVALUATION

We ran an evaluation to compare our Scoring Map
approach with a set of baseline algorithms. Since we
did not find any data set with small UI elements in
web templates, we created a new one. The evaluation
compared how each algorithm clustered the elements
with respect to a reference clustering.

5.1 Preparation

The data set was generated by capturing several DOM
elements from different popular websites taken from

2 Alexa’s top 500 sites on the web http://www.alexa.com/topsites

(accessed Apr, 2021)

the Alexa’s top sites ranking2. To carry out this task,
we created an assistance tool that allowed
highlighting, capturing, and grouping DOM elements
from any website. Using this method, we generated
124 groups with a total 818 DOM elements. We
deliberately created groups with elements of different
heights, considering the longest path amongst all the
elements’ DOM trees in the group. Grouped elements
were kept alongside the set of all the elements
ungrouped and shuffled to test the automatic grouping
of the different algorithms during the experiment.
Table 1 shows details of the dataset.

Table 1. DOM Elements’ data set.

Elements’ Height Groups Count Elements Count
1 44 334
2 28 201
3 15 76
4 13 65
5 12 60
6 7 39
7 4 40
Totals 124 818

Besides creating the dataset, we implemented the
baseline algorithms to which we compared ours. The
selected algorithms were RTDM (Reis, 2004), Bag of
XPaths (Joshi et al, 2003) and simple XPath
comparison. The latter was included for the sake of
comparing our proposal to at least one other
algorithm that was aware of the elements’ location
inside the DOM tree. Using this algorithm, two DOM
elements are considered similar if their XPaths match,
considering only the labels, i.e., ignoring the indices.
For example, the following XPaths:

/body/div[1]/ul[2]/li[3]

/body/div[2]/ul[2]/li[2]

would match when using this criterion, since only the
concrete indices differ.

Except for the XPaths comparison algorithm, all
other algorithms required setting a similarity
threshold that was a number between 0 and 1. We ran
several trials with different configurations to adjust
these thresholds. For the RTDM strategy, we obtained
the best results using a 0.8 threshold, while for the
Bag of XPaths strategy was 0.6. In our algorithms the
optimum threshold was higher: 0.90 for the Scoring
Map algorithm and 0.85 for the Dimensional variant.
Regarding the Dimensional variant, the weight
assigned to the dimensional similarity measure was
0.2, leaving 0.8 for the similarity measure of the base
algorithm.

For the sake of reproducibility, we have made
both the data set and the source code of all
implementations used in this experiment available
online3, including the capturing tool to expand the
data set.

5.2 Procedure

We ran all 5 algorithms (the 3 baseline ones, plus the
2 proposed in this paper) on the dataset, and then
analyzed the clustering that each one produced. The
clustering procedure consisted in adding the elements
one by one; if a group was found in which at least one
element was considered similar, then the new element
was added to that group, otherwise, a new group with
the new element was created. Since for some
algorithms the clustering is prone to change
depending on the order in which the elements are
added, we ran these algorithms with 30 different
random orders and obtained the average numbers, and
also calculated Standard Deviation to find the degree
of this alteration in the results. The results for the
XPaths algorithm showed no alteration whatsoever
with different orders of elements, given that in this
case there is no similarity metric involved but
equality comparisons.

The way of comparing the automatically
generated clusterings with the reference one was by
an analysis of precision and recall, averaged by a f-
score. Since this experiment did not qualify as a
simple classification problem with predefined
classes, there is a special interpretation for the terms
that require clarification. The precision and recall
analysis was calculated considering pairs of elements:

given two elements, if both the automated and
reference clustering put them in the same group, then
we consider this case a true positive. A true negative
is found when the opposite happens. If both elements
are in the same group in the reference clustering but
not in the automated clustering, we consider it a false
negative. Finally, when the opposite happens, i.e., the
automated clustering incorrectly groups the two
elements together when the reference clustering does
not, we consider this case a false positive. Thanks to
this method, we were able to calculate precision,
recall and f-score for the automated clustering
methods.

Given the interpretation for false/true positives
and negatives, the formula for calculating the
precision and recall metrics is standard. In the case of
the f-score, we specifically use a F1-Score formula,
since we want to value precision and recall the same:

𝐹* = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

This value represents a weighted average of
precision and recall measures.

In addition to the evaluations over the complete
set of elements, we ran additional tests with the sub-
groups of elements by height, to gather specific
metrics to analyze the potential influence of the
elements’ size on the different algorithms.

5.3 Results

For all the algorithms we measured precision, recall
and f-score. Additionally, we captured the amounts of
false positives and false negatives. The results for
each algorithm can be seen in both Table 2 and Fig.
4, sorted by ascending f-score. It is important to
remark that, as we explained earlier, these values are
averaged from a set of 30 executions with different
elements’ order (except for the XPath algorithm), so
obtaining an f-score by applying the formula to the
Precision and Recall values on the corresponding
columns will not exactly match the values on the f-
score columns.

There is a very pronounced difference between
the algorithms that consider the elements’ inner
structure, more prepared for comparing full
documents, and the algorithms that consider the
position of the elements, namely XPath, Scoring Map
and Scoring Map variant with dimensional
comparison.

3 Experiment’s resources available at: https://bit.ly/scoring_map

Table 2. Experiment’s results.

Strategy Precision Recall F-Score False Positives False Negatives

Bag Of XPaths 0.2334 0.9332 0.3735 11279 245

RTDM 0.2401 0.9225 0.3810 10750 285

XPaths 0.8411 0.9101 0.8742 633 331

Scoring Map 1.0000 0.9169 0.9567 0 305

Scoring Map
(Dimensional)

0.9971 0.9265 0.9605 9 270

Figure 4. Precision, Recall and F1 Score of the algorithms.

Both algorithms presented in this paper outperformed
the baseline ones in terms of precision and f-score,
but not in recall. Notice though that high precision
means lower false positives ratio, which in the context
of this experiment indicates that fewer elements
considered to be different (in the reference grouping)
were grouped together by the algorithm. High recall,
on the other hand, means that most matching couples
of elements were correctly grouped together by the
algorithm, even if it means that many other elements
were incorrectly grouped together. A very sensitive
algorithm, i.e. one likely to consider any couple of
elements similar, will get this kind of results.

The dimensional variant of the Scoring Map
algorithm reached the highest f-score (0.9605), but
only slightly higher than the original algorithm. It also
obtained a higher recall (0.9265), only second to Bag
of XPaths considering all algorithms. The scoring
map algorithm was however very close in f-score
(0.9567), and obtained perfect precision. The worst
performing algorithms in this analysis also showed
high recall values, but when precision drops to low
levels (below 0.3) this indicates a very high false
positives ratio, as shown in Table 2.

Regarding the evaluation by level, we observed
that, as expected, the baseline algorithms perform
poorly when height is 1 (single nodes), but quickly
ascends as height increases. Our algorithms keep a
high score at all levels, showing their flexibility. The
results by level are shown in Fig. 5.

Figure 5. F-Scores by DOM elements’ height.

With respect to the averaged results, we analyzed the
Standard Deviation to assess the variations in the
results with different orders of elements, but we found
that it to be very low in all cases. The standard
deviation in the f-score for the resulting clusters
depending on the order was 0.0009 for both RTDM
and bag of XPaths, 0.0016 for our scoring map
algorithm and 0.0028 for the dimensional variant.

Further experiments with full documents should
be performed to assess the adequacy of the structural
algorithm (although the dimensional variant would
make no difference in this case) where the baseline
algorithms get the best results, according to the
literature.

5.4 Threats to Validity

When designing the experiment, we faced many
potential threats that required special attention.
Regarding the construction of the elements’ set, we
had to make sure the reference groups were not biased
by interpretation. To reduce this threat, at least two
authors acted as referees to determine elements’
equivalence in the reference groups.

Another potential threat is the size of the dataset
itself. Since there is manual intervention to create the
groups of elements, and there were also restrictions
with respect of their heights, building a large
repository is very time-consuming. The set is large
enough so adding new elements does not alter the
results noticeably, but a larger set would prove more
reliable.

There is also a potential bias due to the clustering
algorithm, which is affected by the order in which
elements are supplied to the algorithms. We tacked
this by running the algorithms repeatedly, as
explained in section 5.2.

6 CONCLUSIONS

In this paper we presented an algorithm to compare
DOM elements by similarity, especially optimized for
different sized elements, flexible enough to work in
small and larger ones. We have also presented a
variant that improves for some cases the results and
shown a wrapper induction technique based on these
algorithms. Their implementations are simpler than
most Tree Edit Distance algorithms and run in order
O(n), being n the total number of nodes of both trees
added together.

We have shown how we benefit from this
algorithm in two projects that represent different
scenarios in the web realm: automatic usability

evaluation, and accessibility improvement by
transcoding techniques.

By running an experiment with a set of 818 DOM
elements we evaluated the performance of the
proposed algorithm in comparison with 3 other
known approaches. We used a data set to test the
algorithms’ flexibility including single DOM
elements from well-known websites. The results
show that our approach noticeably outperforms the
baseline algorithms for small DOM elements and
keeps high scores even as the elements grow up to 7
degrees high.

Thanks to the simple map comparison technique,
the algorithm is relatively easy to implement,
especially in contrast to the known tree edit distance
approaches. It is also very flexible since it allows to
weight the two comparison aspects.

In the future, we plan to assess the adequacy of
the proposed algorithms to larger elements, in
particular full documents. Since the algorithm is
flexible and easy to extend, for instance to recognize
topologies in a stricter way (i.e. incorporating parent-
child relationships), control the weighted scores, etc.
we think this could be a valid alternative for this and
other unexplored scenarios.

ACKNOWLEDGEMENTS

The authors acknowledge the support from the
Argentinian National Agency for Scientific and
Technical Promotion (ANPCyT), grant number
PICT-2019-02485.

REFERENCES

Akers, R. L., Baxter, I. D., Mehlich, M., Ellis, B. J., &
Luecke, K. R. (2005, November). Re-engineering C++
component models via automatic program
transformation. In 12th Working Conference on
Reverse Engineering (WCRE'05) (pp. 10-pp). IEEE.

Amagasa, T., Wen, L., & Kitagawa, H. (2007, September).
Proximity search of XML data using ontology and
XPath edit similarity. In International Conference on
Database and Expert Systems Applications (pp. 298-
307). Springer, Berlin, Heidelberg.

Asakawa, C., & Takagi, H. (2008). Web Accessibility: A
Foundation for Research, chapter Transcoding.

Augsten, N., Böhlen, M., & Gamper, J. (2005, August).
Approximate matching of hierarchical data using pq-
grams. In Proceedings of the 31st international
conference on Very large data bases (pp. 301-312).

Burzacca, P., & Paternò, F. (2013, July). Remote usability
evaluation of mobile web applications.
In International Conference on Human-Computer

Interaction (pp. 241-248). Springer, Berlin,
Heidelberg.

Buttler, D. (2004, June). A short survey of document
structure similarity algorithms. In International
conference on internet computing (Vol. 7).

Díaz, O. (2012, July). Understanding web augmentation.
In International conference on web engineering (pp.
79-80). Springer, Berlin, Heidelberg.

Distante, D., Garrido, A., Camelier-Carvajal, J., Giandini,
R., & Rossi, G. (2014). Business processes refactoring
to improve usability in E-commerce
applications. Electronic Commerce Research, 14(4),
497-529.

Fernandez, A., Insfran, E., & Abrahão, S. (2011).
Usability evaluation methods for the web: A
systematic mapping study. Information and software
Technology, 53(8), 789-817.

Garrido, A., Rossi, G., & Distante, D. (2010). Refactoring
for usability in web applications. IEEE
software, 28(3), 60-67.

Garrido, A., Firmenich, S., Rossi, G., Grigera, J., Medina-
Medina, N., & Harari, I. (2012). Personalized web
accessibility using client-side refactoring. IEEE
Internet Computing, 17(4), 58-66.

Griazev, K., & Ramanauskaitė, S. (2018, November).
HTML Block Similarity Estimation. In 2018 IEEE 6th
Workshop on Advances in Information, Electronic and
Electrical Engineering (AIEEE) (pp. 1-4). IEEE.

Grigalis, T., & Čenys, A. (2014). Using XPaths of
inbound links to cluster template-generated web
pages. Computer Science and Information
Systems, 11(1), 111-131.

Grigera, J., Garrido, A., Panach, J. I., Distante, D., &
Rossi, G. (2016). Assessing refactorings for usability
in e-commerce applications. Empirical Software
Engineering, 21(3), 1224-1271.

Grigera, J., Garrido, A., & Rivero, J. M. (2014, July). A
tool for detecting bad usability smells in an automatic
way. In International Conference on Web
Engineering (pp. 490-493). Springer, Cham.

Hachenberg, C., & Gottron, T. (2013, October). Locality
sensitive hashing for scalable structural classification
and clustering of web documents. In Proceedings of
the 22nd ACM international conference on
Information & Knowledge Management (pp. 359-368).

Joshi, S., Agrawal, N., Krishnapuram, R., & Negi, S.
(2003, August). A bag of paths model for measuring
structural similarity in web documents. In Proceedings
of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining (pp. 577-
582).

Levenshtein, V. I. (1966, February). Binary codes capable
of correcting deletions, insertions, and reversals.
In Soviet physics doklady (Vol. 10, No. 8, pp. 707-
710).

Nebeling, M., Speicher, M., & Norrie, M. (2013, April).
W3touch: metrics-based web page adaptation for
touch. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (pp. 2311-
2320).

Norrie, M. C., Nebeling, M., Di Geronimo, L., & Murolo,
A. (2014, July). X-Themes: supporting design-by-
example. In International Conference on Web
Engineering (pp. 480-489). Springer, Cham.

Omer, B., Ruth, B., & Shahar, G. (2012). A New Frequent
Similar Tree Algorithm Motivated by DOM Mining
Using RTDM and its new variant–SiSTeR.

Reis, D. D. C., Golgher, P. B., Silva, A. S., & Laender, A.
(2004, May). Automatic web news extraction using
tree edit distance. In Proceedings of the 13th
international conference on World Wide Web (pp.
502-511).

Tai, K. C. (1979). The tree-to-tree correction
problem. Journal of the ACM (JACM), 26(3), 422-433.

Valiente, G. (2001, November). An Efficient Bottom-Up
Distance between Trees. In spire (pp. 212-219).

W3C, “25 years ago the world changed forever,” 2016.
[Online]. Available: www.w3.org/blog/2016/08/25-
years-ago-the-world-changed-forever/.

Xu, Z., & Miller, J. (2017). Estimating similarity of rich
internet pages using visual information. International
Journal of Web Engineering and Technology, 12(2),
97-119.

Zanotti, M. (2016) Accessibility and Crowdsourcing: Use
of semantic tags to improve web application
accessibility (in Spanish), Univ. of La Plata, Argentina.

Zheng, S., Song, R., Wen, J. R., & Giles, C. L. (2009,
November). Efficient record-level wrapper induction.
In Proceedings of the 18th ACM conference on
Information and knowledge management (pp. 47-56).

Zeng, J., Flanagan, B., & Hirokawa, S. (2013, June).
Layout-tree-based approach for identifying visually
similar blocks in a web page. In 2013 IEEE/ACIS 12th
International Conference on Computer and
Information Science (ICIS) (pp. 65-70). IEEE.

