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Abstract: Most documents in the WWW are generated from templates that represent user interface (UI) elements, and 
later filled with contents. In the field of information extraction, many approaches emerged to analyze the 
documents’ structure, obtain similar features amongst them, and generate wrappers that are used to extract 
the raw contents from such documents. Therefore, most techniques documented in the literature are optimized 
to compare full documents, but there are other fields of applicability that require analyzing structural similarity 
on smaller UI components, like web augmentation or transcoding. In this paper we present two flexible 
algorithms to measure similarity between DOM Elements by using a mixed approach that considers both 
elements’ location and inner structure. The proposed algorithms were used in the context of two projects: an 
approach for automatic usability refactoring, and a web accessibility helper. We also present a wrapper 
induction technique based on such algorithms. Additionally, we present a precision & recall evaluation of our 
algorithms as compared with other known approaches, applied to DOM elements of different sizes, but 
smaller than full scaled documents. The proposed algorithms run in linear time, so they are faster than most 
approaches that analyze structural similarity. 

1 INTRODUCTION 

The world changed profoundly when 25 years ago, 
Tim Berners-Lee publicized the World Wide Web 
project and invited wide collaboration (W3C, 2016). 
Thanks to that turning point in our history, today we 
possess the largest data repository for all people and 
all fields of science. However, being able to profit 
from this huge amount of data requires building 
increasingly complex automation techniques in two 
main areas of research that are of our interest: 
information extraction, and human-computer 
interaction (HCI) aspects like adaptability and 
usability. 

In the area of information extraction, it is essential 
to recognize document structure and identify 
structural similarity, since this allows clustering 
functionally equivalent components and design 
cluster-specific mining algorithms for each cluster 
(Omer, Ruth, & Shahar, 2012; Joshi et al, 2003). For 
example, in a news portal that shows all articles in 
structurally similar components (in terms of inner 
elements and look-and-feel), this similarity could be 
identified by news extraction applications to separate 

presentation from content (Reis et al, 2004). Other 
approaches in the Area of Web Engineering even use 
variants of Web Scraping to make the application 
development process easier (Norrie et al, 2014). 
Meanwhile, in the field of HCI, there is an increasing 
demand to automatically improve the user experience 
in the web, including techniques for adaptability, 
personalization, accessibility, and usability. Among 
the research works in this area we may find 
techniques like adaptation mechanisms for touch-
operated mobile devices (Nebeling, Speicher & 
Norrie, 2013), transcoding to improve accessibility 
(Asakawa & Takagi, 2008), augmentation to create 
personalized applications versions (Diaz, 2012) and 
our own work on refactoring to improve usability 
(Grigera et al 2016; Grigera, Garrido & Rivero, 2014) 
and accessibility (Garrido et al, 2013). For the sake of 
conciseness, in this article we will call all these 
techniques web adaptations. We claim that for these 
techniques to work correctly and fully unattended at 
a large scale, the ability to detect structural similarity 
in pages or smaller UI elements is essential. For 
example, if an e-commerce website has an 
accessibility problem in the UI element that displays 



a product, it will inevitably have the same problem in 
all products, and it will be important to apply a 
solution to all instances, no matter the product. 
Therefore, in our research objective to automatically 
improve usability in web pages, we found that we 
could benefit from the work on data extraction, as we 
have a challenge in common: automatically and 
precisely discover the structure and similarity of web 
content to be able to cluster it before further 
processing.  

It is interesting to note that web adaptations, even 
if they can be compared to “code adaptations” (i.e., 
refactorings and program transformations), have a 
fundamental difference from the approach used in 
code refactoring tools, in which code smells are 
detected and solved on a per-instance basis. Since UI 
elements from web documents are automatically 
generated from templates, as opposed to manually 
crafted code snippets, web adaptations at large should 
generally work like program restructuring 
transformations (Akers et al, 2005): all instances of a 
problem should be matched and fixed at once. 

The challenge of detecting structural similarity is 
generally addressed by the fact that most data 
intensive websites generate their content 
dynamically, by retrieving it from a database and 
displaying it using template-generated pages. Thus, in 
the field of information extraction, several 
approaches were devised to discover the structure in 
the underlying templates. These approaches typically 
produce a wrapper, which is then used to match all 
structurally similar pages and extract their raw 
contents. Once the similar pages are grouped in 
clusters, the wrapper is generated by identifying the 
common structure within each cluster (Joshi et al, 
2003). Several algorithms used to cluster similar 
pages compute tree edit distance between the DOM 
structure of entire pages (Omer, Ruth, & Shahar, 
2012; Reis et al, 2004). Since these algorithms are 
computationally expensive, other approaches have 
been proposed to measure structural similarity with 
improved execution time, but mostly at the expense 
of accuracy (Joshi et al, 2003; Buttler, 2004).  

Besides the problems with execution time, 
complexity of data structure and accuracy, most 
techniques for data extraction using structural 
clustering are effective when applied to full 
documents. Since the algorithms generally consider 
the inner structure of deep trees, they usually get 
poorer results in the comparison of smaller DOM 
elements that consist of only few nodes. However, 

 
1  XML Path Language http://www.w3.org/TR/xpath-31/  
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web adaptation techniques like transcoding or 
refactoring are generally applied on such DOM 
elements. For example, the adaptations for mobile 
interfaces allowed by the tool W3Touch, may be used 
to resize all menu items with touch-related problems 
inside a page (Nebeling, Speicher & Norrie, 2013). 
Another example is the usability refactoring “Turn 
Attribute into Link” (Garrido, Rossi & Distante, 
2011), which may be used to insert a link in all similar 
elements of a list. 

The problem of comparing similarity between 
DOM elements has been addressed before, usually by 
comparing the elements’ relative position in a 
document using XPath locators1 (Grigalis & Čenys, 
2014; Amagasa, Wen & Kitagawa, 2007; Zheng et al, 
2009). However, while they may successfully detect 
similar elements arranged in iterative structures (like 
lists or menus), they are weaker in the cases where 
similar elements are placed in different locations. 
When this happens, the elements’ inner structure can 
help to determine similarity where the location failed 
to do so, if the structure is complex enough. 

In this paper we present an algorithm designed to 
detect similarity in DOM elements of different sizes. 
This algorithm is based on the comparison of both 
XPath locators and inner structure, including relevant 
tag attributes. Additionally, a variant of this algorithm 
is presented, which considers also on-screen 
dimensions and position of the elements. In order to 
show their applicability, we describe how we apply 
these algorithms in two approaches for web 
adaptation in usability and accessibility. 

Our algorithms can successfully compare and 
cluster elements as small as single nodes but has also 
the flexibility to compare larger elements with the 
same accuracy, or even better than state-of-the-art 
methods. We support this claim with an evaluation 
and explain the results and performance differences 
with respect to other algorithms. Additionally, a 
wrapper induction technique is presented, that is 
based on the Scoring Map algorithm.  

In summary, this paper we make the following 
contributions: 
• We present two algorithms that compute a 

similarity measure between DOM elements 
and perform well with different element sizes. 

• We show the applicability of the algorithms in 
two different projects for web usability and 
accessibility. The DOM element comparison is 
used for clustering elements with the same 
usability smell in one case, and accessibility 



smell in the other; the inducted wrapper is then 
used to fix the bad smells by refactoring or 
transcoding. 

• We assess the performance of the algorithms in 
comparison to others found in the literature 
through an empirical evaluation, with a set of 
more than 800 DOM elements of different sizes 
from well-known sites. 

2 RELATED WORK 

Existing literature in the area shows several different 
ways of detecting similarity between DOM elements. 
Some of these techniques are applicable to any tree 
structure, and some are specific to XML or HTML 
structures. Many of these methods can be found in an 
early review by Buttler (2004). We present the related 
work in three groups: tree edit distance algorithms, 
bag of paths methods, and other approaches. 

2.1 Tree Edit Distance Algorithms 

Since DOM elements can be represented as tree 
structures, they can be compared with some similarity 
measure between trees, such as edit distance. This 
technique is a generalization of string edit distance 
algorithms like Levenshtein’s (1966), in which two 
strings are similar depending on the amount of edit 
operations required to go from one to the other. 
Operations typically consist in adding or removing a 
character and replacing one character for another. 

Since the Tree Edit Distance algorithms are 
generally very time-consuming (up to quadratic time 
complexity), different approaches emerged to 
improve their performance. One of the first or such 
algorithms proposed by Tai (1979) uses mappings, 
i.e. sets of edit operations without a specific order, to 
calculate tree-to-tree edition cost. Following Tai’s, 
other algorithms based on mappings were proposed, 
mainly focused on improving the running times. A 
popular one is RTDM (Restricted Top-Down 
Distance Metric) (Reis, 2004), which uses mappings 
such as Tai’s but with restrictions on the mappings 
that make it faster. Building on RTDM, Barkol, 
Bergman & Shahar (2012) developed SiSTeR, which 
is an adaptation that weights the repetition of 
elements in a special manner, in order to consider as 
similar two HTML structures that differ only in the 
amount of similar children at any given level (e.g. two 
blog posts with different amounts of comments).  

Other restricted mapping methods were 
developed, like the bottom-up distance (Valiente, 
2001), but RTDM and its variants are more suited for 

DOM elements where nodes closer to the root are 
generally more relevant than the leaves. 

Griasev and Ramanauskaite modified the TED 
algorithm to compare HTML blocks [Griasev18]. 
They weight the cost of the edit operations depending 
on the tree level in which they are performed, giving 
a greater cost to those that occur at a higher level. 
Moreover, since different HTML tags can be used to 
achieve the same result, their version of the algorithm 
also accounts for tag interchangeability. 

TED algorithms have also been proposed to 
compare entire web pages [Xu17]. This work defines 
the similarity of two web pages as the edit distance 
between their block trees; structures that contain both 
structural and visual information.    

2.2 Bag of Paths 

Another approach to calculate similarity between 
trees is by gathering all paths / sequences of nodes 
that result from traversing the tree from the root to 
each leaf node, and then comparing similarity 
between the bags of paths of different trees. An 
implementation of this algorithm for general trees 
was published by Joshi et al (2003), with a variant for 
the specific case of XPaths in HTML documents. The 
latter was used in different approaches for documents 
clustering (Grigalis & Čenys, 2014). 

The bag of paths method has one peculiarity: the 
paths of nodes for a given tree ignore the siblings’ 
relationships, and only preserve the parent-child 
links. This results in a simpler algorithm that can still 
get very good results in the comparisons. We have 
similar structural restrictions in our algorithms, as we 
explain later on in Section 3. The time complexity of 
this method is O(n2N), where n denotes the number of 
documents and N the number of paths.  

Another proposal similar to the Bag of Paths 
approach in the broader context of hierarchical data 
structures, is by using pq-grams (Augsten, Böhlen & 
Gamper, 2005). Pq-grams are structurally rich 
subtrees that can be represented as sequences. Each 
tree to be compared is represented as a set of pq-
grams, then used in the comparison. This performs in 
O(n log n), where n is the number of tree nodes. 

Our approach is similar to the aforementioned in 
how it generates linear sequences to represent and 
eventually compare tree structures, although relying 
less on topological information and more on nodes’ 
specific information (such as HTML attributes). 

2.3 Other Approaches 

Different approaches have been developed that have 
little or nothing to do with tree edition distance or 
paths comparison. Many approaches like the one 



proposed by Zen et. al [Zen2013], rely on visual cues 
from browser renderings to identify similar visual 
patterns on webpages without depending on the DOM 
structure. Another interesting work is that of using 
fingerprinting to represent documents (Hachenberg & 
Gottron, 2013), enabling a fast way of comparing 
documents without the need of going through them 
completely, but by comparing their hashes instead. 
Locality preserving hashes are particularly appealing 
in this context, since the hash codes change according 
to their contents, instead of avoiding collisions like 
regular hash functions do. 

Most of the previous methods focus on the inner 
structure of documents, but few consider external 
factors (amongst the ones commented here, only the 
work of Grigalis and Çenys (2014) use inbound links 
to determine similarity). This is due to the fact that 
these approaches are generally designed to compare 
full documents. There are however some works 
focused on comparing smaller elements where 
external factors like location play a more important 
role. Amagasa, Wen and Kitagawa (2007) use XPath 
expressions to identify elements in XML documents, 
which is an effective approach given that XML 
definitions usually have more diverse and meaningful 
labels than, for instance, HTML. Other works focused 
on HTML elements also use tag paths: Zheng, Song, 
Wen, and Giles generate wrappers for small elements, 
to extract information from single entities (Zheng et 
al, 2009). In this work the authors propose a mixed 
approach based on a “broom” structure, where tag 
paths are used identify potentially similar elements, 
and then inner structure analysis is performed to 
generate wrappers. 

Our approach is also a combined method that 
considers some of the inner structure of the elements, 
but also their location inside the document where they 
are contained. 

3 A SCORING MAP ALGRITHM 
TO DETECT DOM ELEMENTS 

The proposed algorithm for detecting similarity 
between DOM elements is a weighted comparison of 
two aspects: location inside the DOM tree, and inner 
structure. As the inner structure grows larger, the 
more relevant it becomes in the final score. 
Conversely, when the structure is smaller, the 
location path that gains more relevance. This 
adjustable scoring method makes the algorithm 
flexible, enabling it to detect both small and large 
DOM elements in terms of tree structure. In this 
section we also introduce a variant that considers also 
the elements’ dimensions and position as rendered in 
the screen. Finally, we show a wrapper induction 

technique based on the proposed algorithm and 
analyze the time complexity. 

3.1 Scoring Map Algorithm 

The proposed algorithm processes the comparison in 
two steps: first, it generates a map of the DOM 
elements to be compared, where some fundamental 
aspects are captured, such as tag names organized by 
level (i.e., depth within the tree), along with relevant 
attributes (e.g. class), but ignoring text nodes. Then, 
these maps are compared to each other, generating a 
similarity score, which is a number between 0 and 1. 
The main benefit of constructing such map structure, 
which is created in linear time, is that it enables 
computing the similarity measure also in linear time 
(with respect to the number of nodes). 

The map summarizes key aspects of the elements’ 
structure and location. Considering a single DOM 
element’s tree structure, the map captures the 
following information for each node: 
• Level number, which indicates depth in the 

DOM tree, where the target node’s level is 0, 
its children 1, and so on. Parent nodes are also 
included using negative levels, i.e. the closest 
ancestor has level -1. 

• Tag name, often used as label in general tree 
algorithms.  

• Relevant attributes, in particular CSS class. 
• Score, which is a number assigned by the 

algorithm representing the relevance of the 
previous attributes when comparison is made. 

In the map, the level number, tag name and 
attributes together compose the key, and the score is 
the value, but since HTML nodes can contain many 
attributes, there will be one key for each, with the 
same level number and tag name. This way. a node 
will in fact generate many entries in the map, one for 
each attribute. For example, if a DOM element 
contains the following node: 

<div id=”container” class=”main zen”> 

the map is populated with 3 entries: one for the div 
label alone, one for the div label with the id 
attribute, and 2 more for the class attribute, one for 
each value: main and zen. Only values of the class 
attribute are considered, other attributes are kept 
without their values. In this case, all three entries 
would get a same score (later in this section we 
explain how this is determined). Also, if this element 
were repeated, only one set of entries would be 
entered since a map cannot have repeated keys, which 
is actually a desirable property for an algorithm that 
applies to HTML elements. Documents generated by 
HTML templates typically contain iteratively 
generated data, e.g., comments in a post. In this case, 



two posts from a same template should always be 
considered similar, no matter the different amounts of 
comments on each one. Therefore, comparing only 
one entry for a set of equivalent DOM elements is 
likely to obtain better results than considering them 
as distinct (Omer, Ruth & Shahar, 2012). 

This map organization is important in the second 
step of the algorithm, where the actual comparison is 
made based on these scores. A full example of a DOM 
element and its scoring map is depicted in Fig. 1. 

Two initial score values are set in the map: one at 
the root, and one at the first parent node (levels 0 and 
-1, respectively). These scores decrease sideways, i.e. 
from the root down to the leaves, and from the first 
parent node up to the higher ancestors. An important 
aspect at this stage is how the initial score for the 
parent node is generated, which is inversely 
proportional to the height of the tree. This is key to 
give our algorithm the flexibility to detect similar 
elements relying less on their location when the trees 
are large enough. In these cases, the inner structure 
scores get more weight on the overall comparison. 

Another aspect worth mentioning of the map 
structure for the elements is how the tree structure is 
captured. Notice that the only information for each 
node regarding this structure is the level number (or 
depth), which ignores the parent-child relationships 
and also the order. The preliminary tests we ran, and 
finally the experiment described in the following 
section, showed that this makes the algorithm simpler 
and faster, and does not implicate a significant 
decrease in the obtained scores. 

The final similarity score between the two 
elements is made by comparing the values of their 
maps. The following formula describes how we 
obtain the similarity S between two elements once 
their maps m and n are generated: 

𝑆(𝑚, 𝑛) = 	
∑ max(𝑚[𝑘], 𝑛[𝑘]) ∗ 2!	∈	(%(&)∩%()))

∑ 𝑚[𝑘]!	∈	%(&)	 + ∑ 𝑛[𝑘]!	∈	%())	
 

The function K(m) answers the set of keys of map 
m, and m[k] returns the score for the key k in the map 
m. In the dividend summation, we obtain the 
intersection of the keys for both maps. For each of 
these keys, we obtain the scores in both maps and get 
the highest value (with max(m[k],n[k])) times 2. The 
divisor term adds the total scores of both maps. This 
function intends to compare similitude in maps using 
their common keys over the number of combined 
keys, much like the Jaccard index calculates the ratio 
between intersection and union in sample sets. It is 
also to the way the Bag of Paths algorithm calculates 
similarity (Joshi et al, 2003). 

3.2 Dimensional Variant 

We devised an alternative algorithm that also 
considers size and position of the elements to improve 
the detection of similar elements when their inner 
structure is scarce. This criterion considers on-screen 
position and dimension to determine if two elements 
are part of a series of repetitive, similar widgets. 

It is usual for repeating DOM elements to be 
aligned, either vertically or horizontally. In such 
cases, it is also usual for one of their dimensions to be 
also equal; in the case of horizontal alignment, the 
height (e.g. a top navigation menu), and in the case of 
vertical alignment, the width (e.g. products listing). 

By using these properties in repetitive elements, 
we obtain a dimensional similarity measure between 
0 and 1 for either of the two cases (i.e. vertical or 
horizontal alignment), in the compared elements.

Figure 1. Sample DOM Element and its corresponding comparison map.  



For each of the two potential alignments, this measure 
is calculated by obtaining the absolute values of the 
proportional differences in position and dimension. 
The higher of both alignment measures is then 
considered as an extra weighted term to the similarity 
formula. A visual example is shown in Fig. 2. 

 
Figure 2. Dimensional alignment example in DOM 
Elements. 

In current web applications, it is usual to find 
responsive layouts that adapt their contents to 
different devices. This could harm the dimensional 
scores when different sized elements are the same but 
rendered in different devices. Depending on the case, 
this may lead to wrong results, but also can be 
beneficial to detect them as different elements, e.g. in 
the field of applicability of web adaptation where 
different adaptations can be applied to the UI 
depending on the device. 

This variant has shown improvements over the 
base algorithm in elements with little structure, but 
imposes an extra step in the capture to gather the 
elements’ bound boxes. The base algorithm, on the 
other hand, can be applied to any DOM element 
represented with the HTML code only. 

3.3 Time Complexity 

The algorithm runs in O(n), i.e. linear time, with 
respect to the size of the compared trees (being n the 
total number of nodes). Even if there are two steps 
involved, one for building the maps and a second to 
perform the comparison, both are linear. It should be 
noticed that calculating the intersection of keys for 
the second step (function K(m) in the formula) is 

linear given that only one of the structures is 
traversed, while the other is accessed by key, which 
is generally considered constant (O(1)) for maps or 
dictionaries (although it can be, depending on the 
language, linear with respect to the size of the key).  

When applying the algorithm to larger DOM 
structures, e.g. full documents, some improvements 
could be made to make this time worst case O(n) in 
practice, by applying a cutoff value when the 
relevance score drops below a certain level. This 
could reduce the trees traversing significantly, and 
consequently decrease the size of the maps, while 
keeping the most relevant score components. 

3.4 Wrapper Induction 

Using the algorithms described in this section, we 
developed a way of generating wrappers that may be 
later used to match new elements or retrieve raw 
information from them. 

Initially, a first element is taken as reference to 
generate an initial map (the same way we explain in 
section 3.1) that will be used as base map. Then, as 
new elements are taken into consideration, we refine 
the base map to iteratively generate the wrapper. The 
way to achieve this is by generating a new map for 
each new element (we will refer to as candidate map)  
and apply the comparison algorithm, also described 
in section 3.1. Depending on the result of this 
comparison, we apply either positive or negative 
reinforcements over the base map. 

When comparing a candidate map with the base 
map, if the result of the comparison is over a given 
similarity threshold, we will first find all the 
intersecting keys of both maps. The scores for these 
keys on the base maps are positively reinforced, by 
adding a reinforcement value. This value is calculated 
as a proportion of the score for the same key in the 
candidate map. During our experiments, we have 
obtained best results with a proportion of 0.35, but 
further analysis should be made to assess and 
optimize this value. When the result of the 
comparison between candidate and base maps do not 
reach the similarity threshold, a negative 
reinforcement is applied in a similar way, also to the 
intersecting keys, by subtracting the same 
reinforcement value. It is important that, no matter 
how much negative reinforcement a score gets, it 
never reaches a value below zero. 

Intuitively, those keys that are shared among 
similar elements, will get a higher score once the 
wrapper induction is done. Conversely, those keys 
that are too common, i.e. present in many different 
elements in the document, will get a lower score, until 
eventually reaching zero. This way, only the 
distinctive keys (which represent tags and attributes) 
end up being the most relevant in the wrapper. 



4 APPLICABILITY 

We developed and refined our algorithms to measure 
structural similarity in the context of two different 
Web Engineering approaches that make use of web 
adaptation in the specific areas of usability and 
accessibility. These approaches are described in the 
next subsections. 

4.1 Automatic Detection and 
Correction of Usability Smells 

The first use case for the Scoring Map algorithm is 
automatic detection of usability problems on web 
applications. This was developed to ease usability 
assessment of web applications, since it is usually 
expensive and tedious (Fernandez, Insfran & 
Abrahão, 2011). Even when there are tools that 
analyze user interaction (UI) events and provide 
sophisticated visualizations, the repair process mostly 
requires a usability expert to interpret testing data, 
discover the underlying problems behind the 
visualizations, and manually craft the solutions. 

The approach is based on refactoring and its 
capacity to incrementally improve not only internal 
quality factors of a deployed application, but also 
external ones, like usability (Distante et al, 2014) or 
accessibility (Garrido et al, 2013). We build on the 
concept of “bad smell” from the refactoring jargon 
and characterize usability problems as “usability 
smells”, i.e., signs of poor design in usability with 
known solutions in terms of usability refactorings 
(Garrido, Rossi & Distante, 2011).  

The scoring map algorithm is then used in the tool 
that supports this approach, the Usability Smell 
Finder (USF). This tool analyses interaction events 
from real users on-the-fly, discovers usability smells 
and reports them together with a concrete solution in 
terms of a usability refactoring (Grigera, Garrido & 
Rivero, 2014). For example, USF reports the smell 
"Unresponsive Element" when an interface element is 
usually clicked by many users but does not trigger any 
actions. This happens when such elements give a hint 
because of their appearance. Typical elements where 
we have found this smell include products list photos, 
website headings, and checkbox/radio button labels.  

Each time USF finds an instance of this smell in a 
DOM element, it calculates the similarity of this 
element with clusters of elements previously found 
with the same smell. When the number of users that 
run into this smell reaches certain threshold, USF 
reports it suggesting the refactoring "Turn Attribute 
into Link". 

The wrapper induction technique presented in this 
paper becomes useful at a later stage. The toolkit is 
able in some cases to automatically correct a reported 

usability smell by means of a client-side web 
refactoring (CSWR) (Garrido et al, 2013), i.e., 
generic scripts that are parameterized to be applied on 
DOM elements in the client-side. Our proposal 
includes applying CSWR automatically by 
parameterizing them with the specific details of a 
detected usability smell and making use of the 
wrapper to find all matching elements that suffer from 
a same specific smell. 

We obtained better results with the Scoring Map 
algorithm than simple XPath comparison, given that 
it works better on large elements, resisting HTML 
changes (small elements get similar results, since 
Scoring Map works in a similar way in these cases). 

4.2 Use of Semantic Tags to Improve 
Web Application Accessibility 

According to W3C accessibility standards, most Web 
applications are neither accessible nor usable for 
people with disabilities. One of the problems is that 
the content of a web page is usually fragmented and 
organized in visually recognizable groups, which 
added to our previous knowledge, allows sighted 
users to identify their role: a menu, an advertisement, 
a shopping cart, etc. On the contrary, unsighted users 
don't have access to this visual information. We 
developed a toolkit that includes a crowdsourcing 
platform for volunteer users to add extra semantic 
information to the DOM elements (Zanotti, 2016) 
using predefined tags, in order to transcode the visual 
information into a more accessible data presentation 
(plain text). This extra information is then 
automatically added on the client-side on demand, 
which is aimed to improve some accessibility aspects 
such as screen-reader functionalities. 

By using an editor tool, when a user recognizes a 
DOM element, the tool applies the structural 
similarity algorithm to find similar elements that 
should be identically tagged within the page. For 
example, as soon as the user tags a Facebook post, all 
other posts are recognized as such and highlighted 
with the same color. At this stage we applied our 
wrapper induction method on the selected element to 
automatically tag the similar ones. Small structural 
differences are ignored, like the number comments. 
By adjusting the threshold, users can cluster elements 
with higher precision, e.g., successfully filtering out 
ads disguised as content. The Scoring Map algorithm 
was actually first developed during this work, since 
other comparison methods didn’t have an adjustable 
similarity threshold, or the required speed. 

A screenshot of the tool capturing YouTube 
videos thumbnails can be seen in Fig. 3, where the 
threshold is adapted to include or exclude video lists 
in the clustering. 



  
 

 
Figure 3. Web Accessibility Transcoder capturing similar DOM elements, using two different threshold values.

This way, we can easily reduce the entire web page 
into a limited set of semantically identifiable UI 
elements that can be used to create accessible and 
personalized views of the same web application, by 
applying on-the-fly transformations to each semantic 
element of the requested page. This happens in real 
time, as soon as the page loads, even on DOM 
changes, such as continuous content loading 
applications like Facebook or Twitter. On each 
refresh, the application applies different strategies to 
look for DOM elements that match the previously 
defined semantic elements, by applying the induction 
wrapper, the application is able to recognize those 
similar DOM elements where the new semantic 
information has to be injected. This process must be 
fast enough to avoid interfering on the user 
experience, which is achieved with our method. 

5 EVALUATION 

We ran an evaluation to compare our Scoring Map 
approach with a set of baseline algorithms. Since we 
did not find any data set with small UI elements in 
web templates, we created a new one. The evaluation 
compared how each algorithm clustered the elements 
with respect to a reference clustering. 

5.1 Preparation 

The data set was generated by capturing several DOM 
elements from different popular websites taken from 

 
2 Alexa’s top 500 sites on the web http://www.alexa.com/topsites 

(accessed Apr, 2021) 

the Alexa’s top sites ranking2. To carry out this task, 
we created an assistance tool that allowed 
highlighting, capturing, and grouping DOM elements 
from any website. Using this method, we generated 
124 groups with a total 818 DOM elements. We 
deliberately created groups with elements of different 
heights, considering the longest path amongst all the 
elements’ DOM trees in the group. Grouped elements 
were kept alongside the set of all the elements 
ungrouped and shuffled to test the automatic grouping 
of the different algorithms during the experiment. 
Table 1 shows details of the dataset. 

Table 1. DOM Elements’ data set. 

Elements’ Height Groups Count Elements Count 
1 44 334 
2 28 201 
3 15 76 
4 13 65 
5 12 60 
6 7 39 
7 4 40 
Totals 124 818 

 
Besides creating the dataset, we implemented the 
baseline algorithms to which we compared ours. The 
selected algorithms were RTDM (Reis, 2004), Bag of 
XPaths (Joshi et al, 2003) and simple XPath 
comparison. The latter was included for the sake of 
comparing our proposal to at least one other 
algorithm that was aware of the elements’ location 
inside the DOM tree. Using this algorithm, two DOM 
elements are considered similar if their XPaths match, 
considering only the labels, i.e., ignoring the indices. 
For example, the following XPaths: 



/body/div[1]/ul[2]/li[3]  

/body/div[2]/ul[2]/li[2] 

would match when using this criterion, since only the 
concrete indices differ. 

Except for the XPaths comparison algorithm, all 
other algorithms required setting a similarity 
threshold that was a number between 0 and 1. We ran 
several trials with different configurations to adjust 
these thresholds. For the RTDM strategy, we obtained 
the best results using a 0.8 threshold, while for the 
Bag of XPaths strategy was 0.6. In our algorithms the 
optimum threshold was higher: 0.90 for the Scoring 
Map algorithm and 0.85 for the Dimensional variant. 
Regarding the Dimensional variant, the weight 
assigned to the dimensional similarity measure was 
0.2, leaving 0.8 for the similarity measure of the base 
algorithm. 

For the sake of reproducibility, we have made 
both the data set and the source code of all 
implementations used in this experiment available 
online3, including the capturing tool to expand the 
data set. 

5.2 Procedure 

We ran all 5 algorithms (the 3 baseline ones, plus the 
2 proposed in this paper) on the dataset, and then 
analyzed the clustering that each one produced. The 
clustering procedure consisted in adding the elements 
one by one; if a group was found in which at least one 
element was considered similar, then the new element 
was added to that group, otherwise, a new group with 
the new element was created. Since for some 
algorithms the clustering is prone to change 
depending on the order in which the elements are 
added, we ran these algorithms with 30 different 
random orders and obtained the average numbers, and 
also calculated Standard Deviation to find the degree 
of this alteration in the results. The results for the 
XPaths algorithm showed no alteration whatsoever 
with different orders of elements, given that in this 
case there is no similarity metric involved but 
equality comparisons. 

The way of comparing the automatically 
generated clusterings with the reference one was by 
an analysis of precision and recall, averaged by a f-
score. Since this experiment did not qualify as a 
simple classification problem with predefined 
classes, there is a special interpretation for the terms 
that require clarification. The precision and recall 
analysis was calculated considering pairs of elements: 

given two elements, if both the automated and 
reference clustering put them in the same group, then 
we consider this case a true positive. A true negative 
is found when the opposite happens. If both elements 
are in the same group in the reference clustering but 
not in the automated clustering, we consider it a false 
negative. Finally, when the opposite happens, i.e., the 
automated clustering incorrectly groups the two 
elements together when the reference clustering does 
not, we consider this case a false positive. Thanks to 
this method, we were able to calculate precision, 
recall and f-score for the automated clustering 
methods. 

Given the interpretation for false/true positives 
and negatives, the formula for calculating the 
precision and recall metrics is standard. In the case of 
the f-score, we specifically use a F1-Score formula, 
since we want to value precision and recall the same:  

𝐹* = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 

This value represents a weighted average of 
precision and recall measures. 

In addition to the evaluations over the complete 
set of elements, we ran additional tests with the sub-
groups of elements by height, to gather specific 
metrics to analyze the potential influence of the 
elements’ size on the different algorithms. 

5.3 Results 

For all the algorithms we measured precision, recall 
and f-score. Additionally, we captured the amounts of 
false positives and false negatives.  The results for 
each algorithm can be seen in both Table 2 and Fig. 
4, sorted by ascending f-score. It is important to 
remark that, as we explained earlier, these values are 
averaged from a set of 30 executions with different 
elements’ order (except for the XPath algorithm), so 
obtaining an f-score by applying the formula to the 
Precision and Recall values on the corresponding 
columns will not exactly match the values on the f-
score columns. 

There is a very pronounced difference between 
the algorithms that consider the elements’ inner 
structure, more prepared for comparing full 
documents, and the algorithms that consider the 
position of the elements, namely XPath, Scoring Map 
and Scoring Map variant with dimensional 
comparison.  

 
 

 
3 Experiment’s resources available at: https://bit.ly/scoring_map   



Table 2. Experiment’s results. 
 

Strategy Precision Recall F-Score False Positives False Negatives 

Bag Of XPaths 0.2334 0.9332 0.3735 11279 245 

RTDM 0.2401 0.9225 0.3810 10750 285 

XPaths 0.8411 0.9101 0.8742 633 331 

Scoring Map 1.0000 0.9169 0.9567 0 305 

Scoring Map 
(Dimensional) 

0.9971 0.9265 0.9605 9 270 

 

Figure 4. Precision, Recall and F1 Score of the algorithms. 

Both algorithms presented in this paper outperformed 
the baseline ones in terms of precision and f-score, 
but not in recall. Notice though that high precision 
means lower false positives ratio, which in the context 
of this experiment indicates that fewer elements 
considered to be different (in the reference grouping) 
were grouped together by the algorithm. High recall, 
on the other hand, means that most matching couples 
of elements were correctly grouped together by the 
algorithm, even if it means that many other elements 
were incorrectly grouped together. A very sensitive 
algorithm, i.e. one likely to consider any couple of 
elements similar, will get this kind of results. 

The dimensional variant of the Scoring Map 
algorithm reached the highest f-score (0.9605), but 
only slightly higher than the original algorithm. It also 
obtained a higher recall (0.9265), only second to Bag 
of XPaths considering all algorithms. The scoring 
map algorithm was however very close in f-score 
(0.9567), and obtained perfect precision. The worst 
performing algorithms in this analysis also showed 
high recall values, but when precision drops to low 
levels (below 0.3) this indicates a very high false 
positives ratio, as shown in Table 2. 

Regarding the evaluation by level, we observed 
that, as expected, the baseline algorithms perform 
poorly when height is 1 (single nodes), but quickly 
ascends as height increases. Our algorithms keep a 
high score at all levels, showing their flexibility. The 
results by level are shown in Fig. 5. 

Figure 5. F-Scores by DOM elements’ height. 



With respect to the averaged results, we analyzed the 
Standard Deviation to assess the variations in the 
results with different orders of elements, but we found 
that it to be very low in all cases. The standard 
deviation in the f-score for the resulting clusters 
depending on the order was 0.0009 for both RTDM 
and bag of XPaths, 0.0016 for our scoring map 
algorithm and 0.0028 for the dimensional variant. 

Further experiments with full documents should 
be performed to assess the adequacy of the structural 
algorithm (although the dimensional variant would 
make no difference in this case) where the baseline 
algorithms get the best results, according to the 
literature. 

5.4 Threats to Validity 

When designing the experiment, we faced many 
potential threats that required special attention. 
Regarding the construction of the elements’ set, we 
had to make sure the reference groups were not biased 
by interpretation. To reduce this threat, at least two 
authors acted as referees to determine elements’ 
equivalence in the reference groups. 

Another potential threat is the size of the dataset 
itself. Since there is manual intervention to create the 
groups of elements, and there were also restrictions 
with respect of their heights, building a large 
repository is very time-consuming. The set is large 
enough so adding new elements does not alter the 
results noticeably, but a larger set would prove more 
reliable. 

There is also a potential bias due to the clustering 
algorithm, which is affected by the order in which 
elements are supplied to the algorithms. We tacked 
this by running the algorithms repeatedly, as 
explained in section 5.2. 

6 CONCLUSIONS 

In this paper we presented an algorithm to compare 
DOM elements by similarity, especially optimized for 
different sized elements, flexible enough to work in 
small and larger ones. We have also presented a 
variant that improves for some cases the results and 
shown a wrapper induction technique based on these 
algorithms. Their implementations are simpler than 
most Tree Edit Distance algorithms and run in order 
O(n), being n the total number of nodes of both trees 
added together. 

We have shown how we benefit from this 
algorithm in two projects that represent different 
scenarios in the web realm: automatic usability 

evaluation, and accessibility improvement by 
transcoding techniques. 

By running an experiment with a set of 818 DOM 
elements we evaluated the performance of the 
proposed algorithm in comparison with 3 other 
known approaches. We used a data set to test the 
algorithms’ flexibility including single DOM 
elements from well-known websites. The results 
show that our approach noticeably outperforms the 
baseline algorithms for small DOM elements and 
keeps high scores even as the elements grow up to 7 
degrees high.  

Thanks to the simple map comparison technique, 
the algorithm is relatively easy to implement, 
especially in contrast to the known tree edit distance 
approaches. It is also very flexible since it allows to 
weight the two comparison aspects. 

In the future, we plan to assess the adequacy of 
the proposed algorithms to larger elements, in 
particular full documents. Since the algorithm is 
flexible and easy to extend, for instance to recognize 
topologies in a stricter way (i.e. incorporating parent-
child relationships), control the weighted scores, etc. 
we think this could be a valid alternative for this and 
other unexplored scenarios. 
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